

ABSTRACT

Bulk-like MoS₂ Thin Films for Microfluidic Channels and High Thermoelectric Performance

T. –S. Ko¹, K. –L. Huang¹, C. Lee^{1, 2}, S. –H. Chen², S. Wu³, Y. –S. Chang⁴, and C. –H. Cheng⁵

¹ Department of Electronic Engineering, National Changhua University of Education, No. 2, Shi–Da Road, Changhua 50074, Taiwan.

² Taiwan Semiconductor Research Institute, No. 26, Prosperity Road 1, Hsinchu Science Park, Hsinchu 300091, Taiwan.

³ Department of Semiconductor Engineering, Lunghwa University of Science and Technology, Taoyuan City, 333326, Taiwan.

⁴ Department of Electronic Engineering, National Formosa University, No. 64, Wenhua Road, Huwei Township, Yunlin County 632, Taiwan.

⁵ Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan.

Using a standard semiconductor fabrication process, we patterned micron-scale grooves on a silicon substrate to form microfluidic channels. We then deposited tens-of-nanometers-thick MoS_2 films onto these channels following the sulfurization technique described earlier. Comparative heat dissipation tests revealed that the MoS_2 -coated microfluidic system removed more heat under identical flow conditions than its pure-silicon counterpart, primarily due to MoS_2 's favorable thermal transport pathways, stable interface with the working fluid, and relatively low surface energy that enhances flow velocity and improves heat removal efficiency [1]. Additionally, MoS_2 films grown on sapphire substrates were measured to have an outstanding Seebeck coefficient of 643 μ V/K. This value, achieved at a thickness of approximately 7 nm, underscores the material's balanced combination of low thermal conductivity and adequate carrier density. The result signifies MoS_2 's strong potential for applications in thermal management and energy harvesting, particularly when integrated into microfluidic systems.

[1] T.-S. Ko, Y.-L. Chen, J. Shieh, S.-H. Chen, J.-Y. Syu, and G.-L. Chen, J. Vac. Sci. Technol. A 41, 033106 (2023).